BMEG3105: Data analytics for personalized genomics and precision medicine

Fall 2025

Lecture 4: From sequence to gene expression matrix: Assembly and mapping

Lecturer: Professor Yu Li Scriber: Tam Chun Hin

Lecture 4 outcome:

- 1) Recap on last lecture
- 2) Using DP table to solve sequence alignment questions
- 3) Understanding gene expression matrix
- 4) Brief introduction on sequence assembly and mapping

Recap on previous lecture:

- DNA sequencing is essential.

DNA holds genetic information

(phenotype = genotype + environment)

- But human genome is highly similar.
- Data is required to measure gene expression (RNA-seq)
 e.g. Professor Lo discover cell-free fetal DNA, with the aid of
 DNA sequencing => non-invasive prenatal testing for down
 syndrome.
- The use of DP table

The pre-destination is not unlimited, the base choice as well

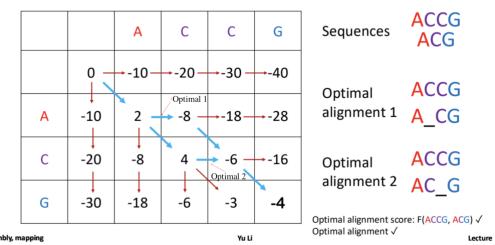
■ For example: a 7 bases sequence will not have a best result of more than 6 bases.

More on DP table:

- Each slot on the DP table can be either adding or reducing at least one base on the adjacent slot.

$$F(2, 1) \xrightarrow{F(+1,0)} F(3, 1) \longrightarrow F(4, 1)$$

$$F(2, 2) \xrightarrow{F(+1,0)} F(3, 2) \longrightarrow F(4, 2)$$


$$F(2, 3) \longrightarrow F(3, 3) \longrightarrow F(4, 3)$$

Difficult by just remembering, DP table can simplify this process

- Also help if we want to find out the optimal alignment for a sequence (cheapest pathway).

Trace back the optimal alignments

- DP table show which pathway is valid and hence easily determine the pathway to get the optimal alignments.
- Now this sequence alignment can be used:
 - 1. finding sequence similarity
 - 2. calculate alignment score (with a scoring matrix)
 - 3. answering the sub-problems and the optimal path
- Obtained 2 sequences, scoring matrix=> obtain solution
- However, the n can be extremely large.
- Dynamic programming needed

Webserver for sequence alignment:

https://www.ebi.ac.uk/Tools/psa/emboss_needle/

Biopython:

Tool for finding out the alignments

https://biopython.org

fromBioimportpairwise2

alignments = pairwise2.align.globalxx("ACCGT", "ACG")

fromBio.pairwise2importformat_alignment

print(format_alignment(*alignments[0]))

Make a DP table:

- Scoring matrix is needed
- Use the best alignment score as the last cell value
- Put on the arrows

Genome Assembly:

- Illumina sequencing ~200bp
- Human genome ~ 3 billion bp

- Too long for sequencing
- 2 reads with overlapping regions => assembled on the overlapping regions (TAA, AAT => TAAT) like a jigsaw.
- However, problems will be found
 - 1. Mutation occurred
 - 2. Conflict on overlap
 - 3. Repeating units (AAA,AAA,AAA)
 - 4. Repeating genes (AAT,AAT,AAT)
 - 5. The process is not efficient

```
T A A

A A T

A T G

T G C

G C C

C A T

A T G

T G G

T G A T

A T G

G A T

A T G

T A A T G C C A T G A T G
```

After getting the reads:

- Slide along each read and calculate difference (DP table, but very slow)
- After mapping, count the population of specific gene, obtain

expression level => making data matrix

Readings and uncovered topics:

- Bioinformatics: Sequence and Genome Analysis -Chapter 2&3
- Time complexity and space complexity analysis
- Local alignment
- Multiple sequence alignment
- Affine gap penalty
- Sequence database search: BLA
- RNA sequence analysis

https://www.dropbox.com/s/j6gu44xszr9e8jk/A%20survey%20of%20best%20practices%20for%20RNA-seq%20data%20analysis.pdf?dl=0