19/07/2025

1155184178 ZHOU Wan leng

Clustering

Why?

-- Better organization, easy to find items and fast searching

Eg. Patient are put into different groups and assigned to speciality hospital –for example elderly stroke centre [aim to optimize the need for that specific group]

Clustering in biology

Eg. Cluster in gene

Co-expressed : same clusterDiff- expressed: diff cluster

Cluster in cell

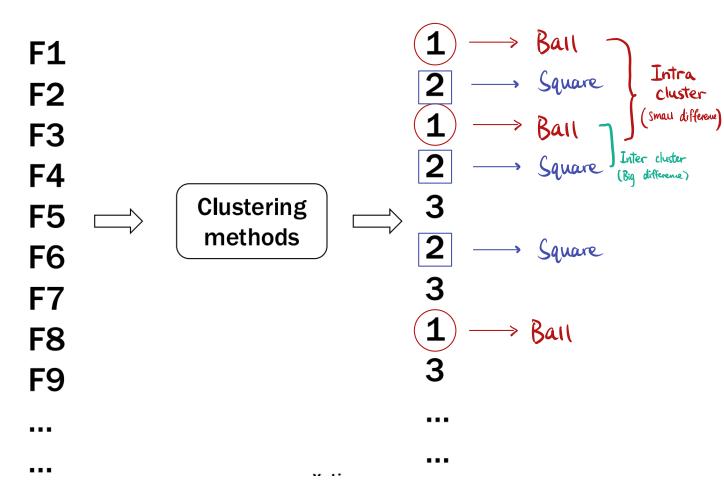
Identify new disease subtypes : eg. diff cancer stages / different treatment = more effective treatment

Summarization

➤ Reduce the size of large data sets

➤Preserve privacy (blur individual information , instead representing them as 1 big cluster and this prevent data leak)

What?


Related to objects in the same group = 1 cluster [Intra-cluster differences are small]

Different from objects in the same group = belongs to other cluster [Inter-cluster differences are large]

How?

Each pixel represent a value

** this clustering method Is treated as a blackbox for now

Correctness check

Parameters in clustering

- >Data to be clustered : check data type and normalize
- >Similarity measurement : to define the level of difference between clusters
- >Clustering algorithm (the executive procedure) : can be reproduce

Define

- Similarity: how alike range [0,1] 1 -higher = same
- Dissimilarity: how different 0=unalike

Similarity measurement method: 1. Cosine similarity: Quantitative of development of gene expression and the contractive of distance.

2. Pearson correlation coefficients: linear relationship / -1~1

2 Subtract Mean				Calculate ab, a ² and		
- 00		A " "	*	<u> </u>	/	4
Temp °C	Sales	"a"	"b"	a×b	a²	b ²
14.2	\$215	-4.5	-\$187	842	20.3	34,969
16.4	\$325	-2.3	-\$77	177	5.3	5,929
11.9	\$185	-6.8	-\$217	1,476	46.2	47,089
15.2	\$332	-3.5	-\$70	245	12.3	4,900
18.5	\$406	-0.2	\$4	-1	0.0	16
22.1	\$522	3.4	\$120	408	11.6	14,400
19.4	\$412	0.7	\$10	7	0.5	100
25.1	\$614	6.4	\$212	1,357	41.0	44,944
23.4	\$544	4.7	\$142	667	22.1	20,164
18.1	\$421	-0.6	\$19	-11	0.4	361
22.6	\$445	3.9	\$43	168	15.2	1,849
17.2	\$408	-1.5	\$6	-9	2.3	36
18.7	\$402			5,325	177.0	174,757
<i>k</i>	1			K	1	A
1 Cald	culate Me	eans		4 Sur	n Up	

$$\frac{5,325}{\sqrt{177.0 \times 174,757}} = 0.9575$$

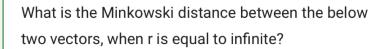
** temp and ice cream sale has a high positive correlation = + 0.9575

3. Euclidean distance : Normalization before calc. , scale must be the same

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Multiple pairs, nxn matrix (n = number of attributes)

4. Minkowski distance: r can be more than 2, Generalized formula


$$dist(p, q) = (\sum_{k=1}^{m} |p_k - q_k|^r)^{\frac{1}{r}}$$

r = 1. Block distance eg. Irl, city is divided into blocks and avenues / difference along x axis and y axis, no matter which route taken will always be the same [total number of differences]

r = 2 Euclidean distance eg. In city, transport route is unlikely to be straight line [overall similarity]

❖ $r \to \infty$. Supreme distance : take limit, max along all dimensions [maximum difference between any component of the vectors]

X=[1,2,3,4,5], Y=[5,4,3,2,1]

- A. 1
- B. 2
- C. 3
- D. 4
- E. 5

You have submitted: 4/D

5-1=4