BMEG 3105

Lec8

Clustering

Yu LI

Friday, 26 September 2025

Clustering Analysis

[using similarity or dissimilarity to measure the differences]

- Intra-cluster differences: small; Inter-cluster differences: large
- Common measures:
 - Cosing similarity
 - Correlation
 - o Euclidean distance
 - Manhattan distance
 - o Mahalanobis distance

Hierarchical Clustering

- produces a set of nested clusters organized as a hierarchical tree
- can be visualized as a dendrogram (a tree like diagram that records the sequences of merges)
- they may correspond to meaningful taxonomies (gene clusters, phylogeny reconstruction, animal kingdom...)

steps:

- 1. Compute the Similarity or Distance Matrix
- 2. Let each data point be a cluster
- 3. Repeat the following steps until only a single cluster remains:
 - Merge the two closest clusters.
 - Update the Similarity or Distance Matrix: min, max group average, distance between centroids, ...

A running example:

Gene	wt	mutant_1	mutant_2	mutant_3
At4g35770	1.5	3	3	1.5
At1g30720	4	7.5	7.5	5
At4g27450	1.5	1	1	1.5
At2g34930	10	25	23	15
At2g05540	1	1	2	1

Linear correlation:

$$\rho_{X,Y} = \mathrm{corr}(X,Y) = \frac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\mathrm{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y} \qquad \text{Visualization after normalization}$$

1. each gene be a cluster

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
	At4g35770					
r	At1g30720	0.9733				
ı	At4g27450	-1	-0.9733			
ι	At2g34930	0.9493	0.9909	-0.9493		
	At2g05540	0.5774	0.562	-0 5774	0.4528	

- 2. merge At2g34930 and At1g30720
- 3. update with minimum distance (largest correlation)

	At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
At4g35770					
At1g30720	0.9733				
		-0.9733			
At4g27450	-1	->-0.9493			
	0.9493				
At2g34930	->0.9733		-0.9493		
				0.4528	
At2g05540	0.5774	0.562	-0.5774	->0.562	

	At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
At4g35770					
At1g30720	0.9733				
At4g27450	-1	-0.9493			
At2g34930	0.9733		-0.9493		
At2g05540	0.5774	0.562	-0.5774	0.562	

- 4. merge At2g34930, At1g30720 and At4g35770
- 5. update with minimum distance (largest correlation)

	At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
At4g35770					
At1g30720					
	-1				
At4g27450	->-0.9493	-0.9493			
At2g34930			-0.9493		
		0.562		0.562	
At2g05540	0.5774	->0.5774	-0.5774	->0.5774	
	At4g35770 At1g30720 At4g27450 At2g34930	At4g35770 At1g30720 -1 At4g27450 ->-0.9493 At2g34930	At4g35770 At1g30720 -1 At4g27450 >-0.9493 -0.9493 At2g34930 0.562	At4g35770 At1g30720 -1 At4g27450 >>-0.9493 -0.9493 At2g34930 0.562	At1g30720 -1 At4g27450 ->-0.9493 -0.9493 -0.9493 -0.9493 -0.562 0.562

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
	At4g35770					
ſ	At1g30720					
┨	At4g27450	-0.9493	-0.9493			
ı	At2g34930			-0.9493		
	At2g05540	0.5774	0.5774	-0.5774	0.5774	

6. merge At2g34930, At1g30720, At4g35770, and At2g05540

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
No de D	At4g35770					
Node2	At1g30720					
Node1	At4g27450	-0.5774	-0.5774			
Node3	At2g34930			-0.5774		
	At2g05540			-0.5774		

About programming

Scikit-learn: https://scikit-learn.org/stable/
Hierarchical clustering in Python: https://scikit-learn.org/stable/

learn.org/stable/auto examples/cluster/plot agglomerative dendrogram

Potential project-2

Data preprocessing for the gene expression matrix

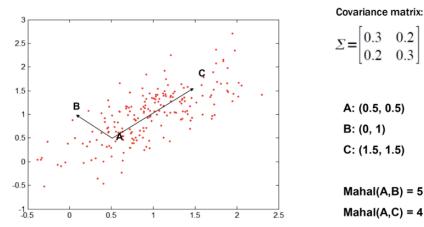
- Data collecting and merging (if needed)
- Exploration
- Visualization
- Data cleaning
- Get distance matrix
- Perform clustering

Dimension reduction (Lec-11)

Advanced Topic

Mahalanobis distance

[Calculating distance considering the data distribution]


mahalanobis
$$(\mathbf{p}, \mathbf{q}) = (\mathbf{p} - \mathbf{q})^T \Sigma^{-1} (\mathbf{p} - \mathbf{q})$$

where Σ is the covariance matrix

inverse of the covariance matrix:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
determinant

$$\begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix}^{-1} = \frac{1}{4x6-7x2} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix}$$
$$= \frac{1}{10} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 0.6 & -0.7 \\ -0.2 & 0.4 \end{bmatrix}$$

example 1:

*C *looks* geometrically farther from A than B does, but Mahalanobis distance from A to C (4) is smaller than to B (5).

example 2:

Quiz	Standard deviation	
1	10	The difference between
		Student A and Student B is 1
		point.
2	1	The difference between
		Student C and Student D is 1
		point.

Should a 1-point difference in Quiz 1 be considered the same as a 1-point difference in Quiz 2? To compare differences fairly, see how many standard deviations apart the two points are.

Quiz 1: 1pt/10std=0.1 standard deviations

Quiz 2: 1pt/1std=1 standard deviation

Conclusion: the 1pt difference in quiz 2 is 10 times more significant than in quiz 1.

→ The Mahalanobis distance- this intuition formalized

Mahalanobis distance & Normalization

Person	Height (m)	Weight (kg)	
P1	1.79	75	
P2	1.64	54	
P3	1.70	63	
P4	1.88	78	
	Mi	n-max <mark>no</mark>	rmalization

the two features (height and weight) are in different scales (meters and kilograms) which can distort distance calculations.

→ utilize min-max normalization for pre-processing

Person	Height	Weight
P1	0.625	0.875
P2	0	0
P3	0.25	0.375
P4	1	1

Resources and uncovered topics

- introduction to data mining: chapter 2.4 & 8
- k-means clustering
- density-based clustering
- how to determine the number of clusters
- how good is your clustering (lec8-9)