What is Clustering Analysis?

- Goal: Group objects so that each cluster has **high internal similarity** and is **well-separated** from others
 - \circ Intra-cluster differences \rightarrow small
 - \circ Inter-cluster differences \rightarrow large
- Core components:
- 1. Data to cluster
- 2. Similarity measure
- 3. Clustering algorithm

Distance & Similarity Measures

Minkowski Distance (generalized L_r norm):

- r=1: Manhattan (a.k.a. city block/taxicab). Includes Hamming distance for binary data
- r=2: Euclidean
- $r\rightarrow\infty$: Supremum (L ∞), i.e., maximum component-wise difference

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2 p3	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Other measures mentioned: cosine similarity, correlation, Mahalanobis distance

Hierarchical Clustering (Main Topic)

- Produces a **nested set of clusters** represented by a *dendrogram*
- Useful in taxonomy-like structures (e.g., biology, gene clustering, phylogeny)

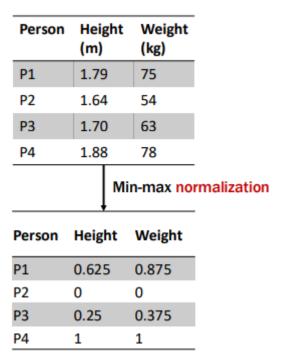
Steps:

- 1. Compute similarity/distance matrix
- 2. Each data point starts as a single-element cluster
- 3. Iteratively merge the **closest clusters**
- 4. After each merge, update the distance matrix
- 5. Repeat until only one cluster remains

Methods for Updating: min, max, Group average, Centroid distance

Running Example (Gene Expression Clustering)

Gene	wt	mutant_1	mutant_2	mutant_3
At4g35770	1.5	3	3	1.5
At1g30720	4	7.5	7.5	5
At4g27450	1.5	1	1	1.5
At2g34930	10	25	23	15
At2g05540	1	1	2	1


• Similarity measured with linear correlation

$$ho_{X,Y} = \operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = rac{\operatorname{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

- Stepwise process shown:
 - 1. Each gene has its own cluster
 - 2. Merge pairs with highest correlation
 - 3. Update matrix (using min correlation as criterion)
 - 4. Continue until a hierarchy is built

Mahalanobis Distance (Advanced Topic)

- Considers both data distribution & covariance
- Uses covariance matrix $(\Sigma) \rightarrow$ requires its inverse for computation
- Intuition: Instead of raw numerical difference, scale by variance/covariance
 - Example: quiz score differences of same magnitude may not be equivalent if variances differ
 - Essentially measures "number of standard deviations apart" between points
- Often combined with **normalization** (e.g., min-max scaling)

11. Conclusion

- Clustering = unsupervised method that relies on similarity measures
- Hierarchical clustering builds a dendrogram structure
- Choice of distance metric (Euclidean, correlation, Mahalanobis)