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1 Why We Need Clustering

Clustering is an unsupervised machine learning technique fundamental to data mining
and exploratory data analysis. It addresses the need to find inherent structures in data
without prior knowledge of the output labels.

1.1 Fundamental Purpose

The primary goal of clustering is to partition unlabeled data into groups of similar objects.
This process of organizing data serves several key purposes:

e Understanding and Gaining Insight: Clustering is often a preliminary step
in data analysis. As a stand-alone tool, it helps in understanding the underlying
distribution and patterns within the data. By observing the characteristics of each
cluster, analysts can formulate hypotheses about the data.

e Data Organization and Summarization: It provides a way to structure data.
For example, grouping a large number of documents allows for better organization
and faster searching (slide 11). Clustering can also be used for data summarization
by reducing the size of large datasets. The cluster centroids can sometimes be
used as representatives for all data points in that cluster, preserving significant
information while reducing complexity.

e Pre-processing Step: Clustering can serve as an essential pre-processing step
for other machine learning algorithms. For example, it can be used for feature
engineering, where a cluster ID is added as a new feature to the dataset for a
subsequent supervised learning task.

1.2 TImproving Daily Life

The application of clustering has a tangible impact on our daily life by enabling smarter,
more efficient systems:

e Customer Segmentation: In marketing, companies cluster customers based on
their purchasing behavior, demographics, or browsing history. This allows for tar-
geted marketing campaigns and personalized product recommendations, optimizing
the business strategy based on the needs of different groups (slide 11).

e Healthcare: Patients can be clustered into different groups based on their clinical
characteristics or genetic profiles. This facilitates the development of different treat-
ment protocols for different groups, forming a cornerstone of personalized medicine
(slide 11).

e Information Management: Search engines and news aggregators group related
documents, web pages, or articles, allowing users to browse through topics of interest
efficiently.



1.3 Applications in Biology

Clustering is indispensable in bioinformatics and computational biology for analyzing
high-dimensional biological data (slide 12):
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e Gene Expression Analysis: Clustering helps to identify groups of genes with

similar expression patterns across different conditions.

— Co-expressed genes are often involved in the same biological pathways or
are co-regulated.

— Differentially expressed genes can be related to specific diseases or cellular
states.

Disease Sub-typing: Clustering patient samples based on molecular data (e.g.,
gene expression) can reveal previously unknown disease sub-types. This is crucial
in fields like oncology, where different sub-types of cancer may respond differently
to treatments.

Cell Type Identification: In single-cell RNA sequencing (scRNA-seq), clustering
is used to group thousands of cells into distinct populations, enabling the discovery
and characterization of new or rare cell types.

What is Clustering Analysis?

At its core, clustering analysis is about discovering groups in data.

2.1 Academic Definition

A widely accepted definition of clustering analysis is:

"The process of finding groups of objects such that the objects in a group will be stmilar

to one another and different from the objects in other groups.” (slide 5)

2.2 Keywords and Core Concepts

This definition is built on two fundamental concepts, which represent a dual objective:

e Intra-cluster Similarity (Cohesion): Objects within the same cluster should

be as similar as possible. The ”intra-cluster differences are small” (slide 5). This
measures how tightly-knit the objects within a cluster are.



e Inter-cluster Similarity (Separation): Objects in different clusters should be
as dissimilar as possible. The ”inter-cluster differences are large” (slide 5). This
measures how distinct and well-separated one cluster is from another.

The effectiveness of a clustering algorithm is judged by its ability to maximize intra-cluster
similarity while minimizing inter-cluster similarity. The precise meaning of ”similarity”
and ”dissimilarity” is crucial and depends on the chosen metric (e.g., Euclidean distance,
Cosine similarity, Correlation) and the nature of the data itself.

2.3 Output of Clustering

The output of a clustering algorithm is a cluster structure, which typically includes:

e A partition of the data objects into a set of clusters.

e Each object is assigned a cluster indicator or label (e.g., an integer from 1 to K,
where K is the number of clusters). (slide 19)

e In the case of hierarchical clustering, the output is a tree-like structure known as
a dendrogram, which shows the nested grouping of objects and the sequence of
merges or splits. (slide 13)

Ultimately, clustering adds labels to a previously unlabeled dataset, with the labels cor-
responding to the discovered groups.

2.4 Examples of Real-World Applications

Clustering analysis is applied across numerous domains (slide 14):

1. Business Intelligence: Grouping stocks with similar price fluctuations for port-
folio management.

2. Document Analysis: Grouping related documents for browsing and topic mod-
eling.

3. Genomics: Grouping genes and proteins that share similar functionality or evolu-
tionary history.

4. Image Processing: Segmenting images by grouping pixels with similar properties.

5. Social Network Analysis: Identifying communities or cliques within social net-
works.



3 How to Do Clustering

The process of clustering follows a logical workflow, underpinned by mathematical mea-
sures of similarity and a chosen algorithm.

3.1 Logical Flow of a Clustering Project

A clustering task is not a single-step process. It involves several stages, from data prepa-
ration to the final analysis of clusters (slides 25, 49).

1. Data Collection and Preparation:

e Collect Data: Gather the raw data (e.g., gene expression matrix).

e Data Cleaning: Handle missing data, remove duplicates, and denoise data
if necessary. This step ensures data quality.

e Data Normalization: Scale features to a common range. This is critical
for distance-based algorithms like Euclidean distance to prevent features with
large scales from dominating the clustering process.

2. Core Clustering Components:

e Select a Similarity /Distance Metric: Choose a mathematical formula to
quantify how similar or different two data points are. This is arguably the
most critical step as the ”correct” clustering depends heavily on this choice.

e Select a Clustering Algorithm: Choose an algorithm (e.g., Hierarchical,
K-Means, DBSCAN) that fits the data’s characteristics and the analysis’s goal.

e Perform Clustering: Run the algorithm on the prepared data to generate
cluster assignments.

3. Exploration and Validation:

e Visualization: Use plots (e.g., scatter plots for low-dimensional data, heatmaps,
dendrograms) to visualize the results.

e Interpretation: Analyze the resulting clusters. What are the defining charac-
teristics of each group? This stage turns the numerical output into actionable
insights.

3.2 Mathematical Formulas for Similarity and Distance

The choice of metric defines what ”similar” means for your dataset.



Minkowski Distance A generalized distance metric. For two vectors p and ¢ of dimen-

sion m: )
dist(p, q) = (Z pr. — Qk|r>
k=1

Why: Its flexibility allows it to adapt to different geometric interpretations of
distance. Key special cases include:

e r=1 (Manhattan Distance): Measures the distance as the sum of abso-
lute differences along each dimension (”city block” distance). Useful when
movement is restricted to a grid.

e r=2 (Euclidean Distance): The shortest straight-line distance between two
points. It is the most common and intuitive distance metric.

e r=00 (Supremum Distance): The maximum absolute difference between
any single dimension.

Pearson Correlation Measures the linear relationship between two vectors X and Y.
It ranges from -1 (perfect negative correlation) to +1 (perfect positive correlation).

_cov(X,Y) _ Bl(X — px)(Y — )
PxXyYy = =
OxO0Oy OxO0y

Why: It is ideal for finding objects that have similar trends or patterns, regardless
of their absolute magnitudes. In gene expression analysis (slides 17, 43), it helps
identify genes that are up-regulated or down-regulated together, suggesting they
are part of the same biological process.

Mahalanobis Distance A sophisticated metric that accounts for the correlations within
the data. For vectors p and ¢ with a covariance matrix X:

Dy(p,q) =/ (p— TS (p - q)

Why: Unlike Fuclidean distance, it is scale-invariant and considers the covariance
of the data distribution. It effectively measures the distance in terms of standard
deviations, providing a more robust measure when features are correlated and have
different variances (slide 27). This is useful for identifying outliers in a multivariate
distribution.

3.3 Hierarchical Clustering: Gene Expression Example

Hierarchical clustering builds a hierarchy of nested clusters, often visualized as a tree
called a dendrogram (slide 13). The agglomerative (bottom-up) approach is most
common.

The Agglomerative Algorithm:

1. Start by treating each data point (e.g., each gene) as its own cluster.



2. Compute a similarity matrix between all clusters.
3. Repeat:

e (a) Merge the two closest (most similar) clusters.

e (b) Update the similarity matrix to reflect the merge.

4. Continue until only one cluster remains.

How to Update the Similarity Matrix (Linkage Criteria): When merging clusters,
the similarity to other clusters must be re-calculated. Common criteria include (slide 15):

e Single Linkage (MIN): The similarity is the maximum similarity between any
two points in the two clusters. It can handle non-elliptical shapes but is sensitive
to noise.

e Complete Linkage (MAX): The similarity is the minimum similarity between
any two points. It produces more compact clusters.

e Average Linkage: The similarity is the average similarity between all pairs of
points.

Walkthrough: Clustering Gene Expression Data
Let’s follow the example from the slides (18-22) using the provided gene data and Pearson
Correlation as the similarity metric. We will use single linkage for updating.

Step 0: Initial Data and Similarity Matrix
We begin with 5 genes, each its own cluster. The initial pairwise similarity matrix is
computed (slide 18):

Table 1: Initial Similarity (Correlation) Matrix

Gene At4g35770 Atlg30720 Atdg27450 At2g34930 At2g05540
Atdg35770 1

At1g30720 0.9733 1

At4g27450 -1.0000 -0.9733 1

At2g34930 0.9493 0.9909 -0.9493 1

At2g05540 0.5774 0.5620 -0.5774 0.4528 1

Iteration 1: First Merge (slide 19)
1. Merge: The highest similarity is 0.9909 between At2g34930 and At1g30720.
We merge them into a new cluster: (C1: At1g30720, At2g34930).

2. Update: Using single linkage, the similarity between C1 and any other gene (e.g.,
At4g35770) is the mazimum of the individual similarities:

e sim(C1, At4g35770) = max(0.9733, 0.9493) = 0.9733



o sim(C1, At4g27450) = max(-0.9733, -0.9493) = -0.9493
o sim(C1, At2g05540) = max(0.5620, 0.4528) = 0.5620

Iteration 2: Second Merge (slide 20) The updated matrix is:

Table 2: Matrix After First Merge

Cluster At4g35770 Cl At4g27450
At4g35770 1

C1 0.9733 1

At4g27450 -1.0000 -0.9493 1
At2g05540 0.5774  0.5620 -0.5774

1. Merge: The new highest similarity is 0.9733 between At4g35770 and cluster
C1l. We merge them into a new, larger cluster: (C2: At4g35770, At1g30720,
At2g34930).

2. Update: We repeat the update step with the new cluster C2.
... This process continues, merging clusters based on the highest similarity at each step,

until all genes are grouped into a single cluster. The sequence of merges is what forms
the final dendrogram (slide 22).

3.4 Programming Logic in Python

Scikit-learn is a popular Python library for machine learning (slide 23). While SciPy is
often used for dendrograms, Scikit-learn provides an easy-to-use interface for hierarchical
clustering.

Key Steps:

1. Import Libraries:

import numpy as np

from sklearn.cluster import AgglomerativeClustering
import matplotlib.pyplot as plt

from scipy.cluster.hierarchy import dendrogram, linkage

2. Prepare Data: The data should be in a numerical format, typically a NumPy
array. Let’s call it X.

3. Perform Clustering (Scikit-learn):



# Initialize the model

# affinity=’correlation’ cannot be used with linkage=’ward’

# Use ’euclidean’ for this example or ’precomputed’ for custom matrices
cluster_model = AgglomerativeClustering(

n_clusters=3, # The desired number of clusters
affinity=’euclidean’, # The distance metric
linkage=’ward’ # The linkage criterion

# Fit the model and get cluster labels
labels = cluster_model.fit_predict(X)

4. Visualize as a Dendrogram (SciPy): Scikit-learn does not have a built-in
function to plot dendrograms, so we use SciPy for visualization, which shows the

full hierarchy (slide 24).

# Generate the linkage matrix
linked_matrix = linkage(X, method=’ward’, metric=’euclidean’)

# Plot the dendrogram

plt.figure(figsize=(10, 7))
dendrogram(linked_matrix)
plt.title(’Hierarchical Clustering Dendrogram’)
plt.xlabel(’Data Points’)
plt.ylabel(’Distance’)

plt.show()

4 Broader Applications of Clustering

Clustering algorithms are general-purpose tools that have catalyzed advancements across
numerous fields beyond biology and business.

Cybersecurity: In network anomaly detection, normal network traffic patterns form
dense clusters. Any traffic that falls outside these clusters (outliers) can be flagged
as a potential intrusion or attack, allowing for real-time threat identification.

Urban Planning: Municipalities can cluster neighborhoods based on census data, util-
ity usage, and traffic flow. This helps in identifying areas with similar needs, opti-
mizing public transportation routes, and planning for new infrastructure like parks,
schools, and emergency services.

Climate Science: Climatologists cluster vast amounts of satellite imagery and meteo-
rological data to identify regions with similar climate patterns. This is essential for
modeling climate change, predicting extreme weather events like hurricanes, and
understanding global weather systems like El Nino.



Astronomy: Researchers apply clustering to astronomical survey data to automatically
group celestial objects. Galaxies can be clustered based on their morphology, stars
can be grouped into stellar populations or associations, and this helps to test the-
ories about cosmic structure formation and stellar evolution.

Robotics and Computer Vision: Clustering is fundamental to image segmentation,
where pixels are grouped by color, texture, or intensity. This allows a robot’s vision
system to distinguish different objects in its environment, enabling it to navigate
and interact with the physical world.
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