#### BMEG 3105 Lec11

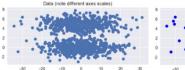
# Clustering and classification performance evaluation

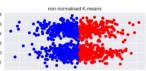
Yu LI

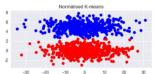
Friday, 10 October 2025

# Purpose of model evaluation

- Characterize the performance of a model
  - o Pinpoint the strong points and weak points of a method


0


- Method selection/Model selection
  - For clustering: normalization methods, distance measurements, distance between different clusters, ...
  - For classification: normalization methods, distance measurements, K, ...


# **Clustering performance evaluation**

- Intra-cluster distances: small

- Inter-cluster distances: large







#### Classification evaluation

- Requires quantitative values to summarize the performance of different methods

| Person | Height(<br>m) | Weight(<br>kg) | Gender |
|--------|---------------|----------------|--------|
| P1     | 1.79          | 75             | М      |
| P2     | 1.64          | 54             | F      |
| P3     | 1.70          | 63             | М      |
| P4     | 1.88          | 78             | М      |
| P5     | 1.75          | 70             | ?? ~   |

| Person | Method<br>1 | Method<br>2 | Method<br>3 |
|--------|-------------|-------------|-------------|
| P1     | М           | F           | M           |
| P2     | M           | F           | F           |
| P3     | М           | M           | M           |
| P4     | М           | M           | M           |
| P5     | F           | F           | M           |

#### 1. Confusion matrix

|              | Predicted class |           |          |  |
|--------------|-----------------|-----------|----------|--|
|              |                 | Class=Yes | Class=No |  |
| Actual class | Class=Yes       | a(TP)     | b(FN)    |  |
| O.C.CC       | Class=No        | c(FP)     | d(TN)    |  |

TP: True Positive TN: True Negative FP: False Positive FN: False Negative

#### Accuracy

$$=\frac{a+d}{a+b+c+d}=\frac{TP+TN}{TP+TN+FP+FN}$$

<u>Precision</u> (how many of the predicted positive samples are correct)

$$=\frac{a}{a+c}$$

Recall (how many actual positive samples are predicted to be positive)

$$=\frac{a}{a+b}$$

<u>F1 score</u> (the weighted average of precision and recall)

$$= \frac{2 * precision * recall}{presicion + recall}$$

→ Limitation: misleading for imbalanced data

Balanced Accuracy (metric that accounts for class imbalance)

$$= 0.5 * \left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP}\right)$$

## \*\*\* No metric value is absolute. Context matters. \*\*\*

#### Example:

|                 | Predicted class |           |          |  |
|-----------------|-----------------|-----------|----------|--|
|                 |                 | Class=Yes | Class=No |  |
| Actual<br>class | Class=Yes       | 2(TP)     | O(FN)    |  |
| Cidoo           | Class=No        | 50(FP)    | 50(TN)   |  |

- → Terrible model
- → But because it misses zero cancer cases (0FN) it might be excellent for rare cancer prescreening

#### KNN

Standard procedure:

- 1. Normalization
- 2. Compute distances
- 3. Identify the K most similar data
- 4. Take their class out and find the mode class

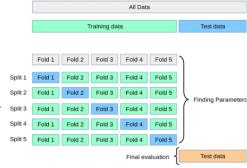
How to choose K when the data is all we have?

- A good K: good prediction accuracy
- Problem: we don't have the label for testing data
- Solution: use part of the training data as the testing data
  - O User each part one by one -> calculate the average over the parts

#### Procedure:

- 1. Hide label of one data point; the remaining points as training set for predicting the hidden label
- 2. Use a specific K
- 3. Record prediction
- 4. Repeat steps 1-3 for every data point
- 5. Calculate and compare accuracy of the trials

## **Cross-fold validation** (/rotation estimation)


- To assess how the results of a machine learning analysis will generalize to an independent data set
- A procedure to measure the performance of models
- One round of cross-validation involves partitioning a set of data into complementary subsets, performing the analysis on one subset(training set), and validating the analysis on the other subset(testing set)

#### n-fold validation

train multiple times, leaving out a disjoint subset of data each time for validation, then averaging the validation set accuracies



- 1. randomly partition data into n disjoint subsets
- 2. for i=1 to n
  - validation data= i-th subsest
  - $h < \ classifier \ trained \ on \ all \ data \ except \ for \ validation \ data \\ \ _{Split 3} \ \ _{Fold 1} \ \ _{Fold 2} \ \ _{Fold 4} \ \ _{Fold 5}$
  - accuracy(i)= accuracy on h on validation data
- 3. final accuracy= mean of the n recorded accuracies



#### leave-one-out cross-validation

- a special case of n-fold cross-validation, where n=N
- - 1. partition data into N disjoint subsets, each containing one data point
  - 2. for i=1 to N
    - o validation data= i-th subsest
    - h <- classifier trained on all data except for validation data
    - accuracy(i)= accuracy of h on validation data
  - 3. final accuracy= mean of the N recorded accuracies

## **Multi-class classification**

KNN: algorithm change not needed Logistic regression: changes needed

- build a logistic regression for each class
- when predicting, assign class with highest value
- when training, train 3\*6=18 parameters

## **Multi-class evaluation**

- still using accuracy, precision, recall, F1 score, ... (consider each class as a binary classification problem)

to aggregate multiple values into one 
$$Macro - average = \frac{0.9 + 0.95 + \dots + 0.7 + 0.2}{6} = 0.73$$

$$Micro - average = \frac{0.9 * 150 + \dots + 0.2 * 10}{150 + \dots + 10} = 0.85$$

The low-performance of small classes will show up in Macro-average

More criteria at: https://scikit-learn.org/stable/modules/model evaluation.html

# **Clustering evaluation**

- correct as long as similar cells are in the same cluster (as opposed to only being correct for a cancer cell only if we predict it as cancer cell in classification)

Actual clusters

The same a(TP) b(FN)

Not the same c(FP) d(TN)



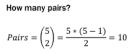


For all the pairs in the dataset (how many do we have?):

- a: the number of pairs are in the same cluster in the True clusters and also assigned to one cluster in the Predicted clusters
- b: the number of pairs are in the same cluster in the True clusters and also assigned to different clusters in the Predicted clusters
- c: the number of pairs are in different clusters in the True clusters and also assigned to one cluster in the Predicted clusters
- d: the number of pairs are in different clusters in the True clusters and also assigned to different clusters in the Predicted clusters

#### Rand index

$$R = \frac{a+d}{a+b+c+d} = \frac{a+d}{Number\ of\ all\ the\ pair\ combinations}$$


$$Pairs = \binom{n}{2} = \frac{n * (n-1)}{2}$$

n: Total number of points

## Example:

| Pair   | Real      | Predicted | Results |
|--------|-----------|-----------|---------|
| C1, C2 | Same      | Same      | ✓       |
| C1, C3 | Same      | Different | ×       |
| C1, C4 | Different | Different | ✓       |
| C1, C5 | Different | Different | ✓       |
| C2, C3 | Same      | Different | ×       |
| C2, C4 | Different | Different | ✓       |
| C2, C5 | Different | Different | ✓       |
| C3, C4 | Different | Same      | ×       |
| C3, C5 | Different | Same      | ×       |
| C4, C5 | Same      | Same      | ✓       |





Rand index?  $R = \frac{a+d}{a+b+c+d} = \frac{6}{10} = 0.6$ 

More clustering performance evaluation: https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation

# Potential project-2,3

Data preprocessing for the gene expression matrix

- ➤ Data collecting and merging (if needed)
- **≻**Exploration
- **≻**Visualization
- ➤ Data cleaning
- ➤ Dimension reduction (next lecture)
- ➤ Get distance matrix
- ➤ Perform classification/clustering
- ➤ Performance evaluation

# Model evaluation in Python

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification\_report https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation https://scikit-learn.org/stable/modules/cross\_validation.html

# Resources and uncovered topics

- ♦ Introduction to data mining: Chapter 4.5 & 4.6 & 5.7 & 5.8 & 8.5
- **♦**Bootstrap
- ♦•Overfitting and generalization
- Other clustering and classification methods
- Comparison between different methods
  - **≻**Clustering
  - **≻**Classification