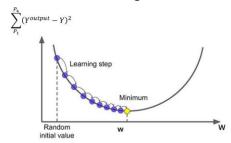
Lec 11 Scribing


• Recap:

Logistic Regression:

- 1. Logistic function & Loss function
- 2. Training Procedure:

$$w_i = w_i + \Delta w_i$$

 $\Delta w_i = 2 * \alpha (Y - Y^{output}) \frac{\partial Y^{output}}{\partial w_i}$
 α is a small constant

3. Gradient descent algorithm

New Content:

Model evaluation:

1. Purpose of model evaluation:

Characterize the performance of a model

- ➤ Pinpoint the strong points and weak points of a method
- ➤ Method selection/Model selection
- 2. Classification Performance Evaluation
 - 1) Confusion Metrix eg. Gender Classification

	Predicted class				
		Class=Yes	Class=No		
Actual class	Class=Yes	a(TP)	b(FN)		
Oldoo	Class=No	c(FP)	d(TN)		

TP: True Positive TN: TrueNegative FP: False Positive FN: False Negative

b. Accuracy: (Most widely-used metric)

Accuracy =
$$\frac{a+d}{a+b+c+d}$$
 = $\frac{TP+TN}{TP+TN+FP+FN}$

^{*}Imbalanced classes maybe misleading for imbalanced data.

c. Precision, recall, and F1 score:

$$Precision = \frac{a}{a+c} = \frac{4949}{4949+51} = 0.99$$

Precision: Among the predicted positive samples, how many of them are correct?

$$Recall = \frac{a}{a+b} = 1$$

Recall: How many actual positive samples are predicted to be positive?

$$F1\ score = \frac{2*precision*recall}{presicion+recall} = 0.995$$

F1 score: The weighted average of precision and recall

*However, still may be misled by imbalanced data

d. Balanced accuracy:

$$Balanced\ accuracy = 0.5*\left(\frac{TP}{TP+FN} + \frac{TN}{TN+FP}\right) = 0.5$$

- e. *Personal Method Dealing with Imbalanced Data :if knowing it's an imbalanced dataset, suggest to look at the confusion matrix directly
- 2) How to find a good K for KNN with the below data?
 - a. What is a good K?

The K can give us good prediction accuracy

b. Method: (Get the distance metric first)

Person	Height	Weight	Gender		P1	P2	P3	P4
P1	0.625	0.875	M	P1	0	0.875	0.5	0.375
P2	0	0	F	P2	0.875		0.375	
P3 P4	0.25	0.375	M	P3	0.5			0.75
P5	0.4583	0.6667	??	p4	0.375		0.75	

use part of the training data as the testing data

- ➤ Use each part one by one
- ➤ Calculate the average over all the parts

Eg. Gender Classification

- ⇒ Select K=3
- 2.1 Cross-fold Validation/Rotation estimation:
 - 1) Def: a technique for assessing how the results of a machine learning analysis will generalize to an independent dataset.
 - Procedure: Partitioning a set of data into complementary subsets;
 Performing the analysis on one subset (the training set);
 Validating the analysis on the other subset (the testing set)
 - 3) n-fold cross-validation:
 - a. Train multiple times, leaving out a disjoint subset of data each time for validation. Average the validation set accuracies.
 - b. Process:
 - ➤ Randomly partition data into n disjoint subsets
 - ightharpoonup For i = 1 to n
 - •Validation Data = i-th subset

5-fold cross-validation

- •h <-classifier trained on all data except for Validation Data
- •Accuracy(i) = accuracy of h on Validation Data
- ➤ Final Accuracy = mean of the n recorded accuracies Eg.5-fold cross-validation

*10 data points: P1-P10 *5-fold P1-2, P3-4, P5-6, P7-8, P9-10 P1-2, P3-4, P5-6, P7-8, P9-10 P1-2 grouping can be random *Procedure P1-2's results based on the model from P3-10 * 10 data points: Training data Test data

- 4) Leave-one-out cross-validation
 - a. a special case of n-fold cross-validation, where n = N
- 2.2 Multi-class Classification

➤ Averaging

- 1) For KNN, it is trivial ➤No need to change the algorithm
- 2) For logistic regression, we need some change:

> P9-10's results based on the model from P1-8

- ➤ Build a logistic regression for each class
- ➤ When predicting, we assign class with highest value
- ➤When training, we train 3*6=18 parameters

- 3) Still using accuracy, precision, recall, F1 score and so on
 - ➤ Considering each class as a binary classification problem
 - How to aggregate multiple values into one value?

$$Macro - average = \frac{0.9 + 0.95 + \dots + 0.7 + 0.2}{6} = 0.73$$

$$Micro-average = \frac{0.9*150+\cdots+0.2*10}{150+\cdots+10} = 0.85$$

Class	Accuracy	Cells
1	0.9	150
2	0.95	50
3	0.85	100
4	0.8	40
5	0.7	20
6	0.2	10

The low-performance of small classes will show up in Macro-average

3. Clustering evaluation

1)How to evaluate Cluster: In clustering, we are correct as long as two similar cells are in the same cluster

- ➤ We should evaluate a pair of cells
- ➤ We also have a confusion matrix

	Predicted clusters				
		The same	Not the same		
Actual	The same	a(TP)	b(FN)		
	Not the same	c(FP)	d(TN)		

- a: the number of pairs are in the same cluster in the True clusters and also assigned to one cluster in the Predicted clusters
- b: the number of pairs are in the same cluster in the True clusters and also assigned to different clusters in the Predicted clusters
- c: the number of pairs are in different clusters in the True clusters and also assigned to one cluster in the Predicted clusters
- d: the number of pairs are in different clusters in the True clusters and also assigned to different clusters in the Predicted clusters

2)Rand Index:

Rand index, R:

$$R = \frac{a+d}{a+b+c+d} = \frac{a+d}{Number\ of\ all\ the\ pair\ combinations}$$

$$Pairs = \binom{n}{2} = \frac{n*(n-1)}{2}$$
 n: Total number of points

Cell	C1	C2	C3	C4	C5
Real cluster	0	0	0	1	1
Predicted cluster	2	2	3	3	3

How many pairs?

Daina -	⁽⁵⁾ _	$\frac{5*(5-1)}{2} =$	10
Pairs =	$\binom{2}{} =$	=	10

Rand index?

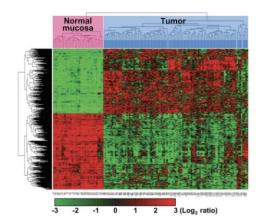
$$R = \frac{a+d}{a+b+c+d} = \frac{6}{10} = 0.6$$

Pair	Real	Predicted	Results
C1, C2	Same	Same	✓
C1, C3	Same	Different	×
C1, C4	Different	Different	✓
C1, C5	Different	Different	✓
C2, C3	Same	Different	×
C2, C4	Different	Different	✓
C2, C5	Different	Different	✓
C3, C4	Different	Same	×
C3, C5	Different	Same	×
C4, C5	Same	Same	√

3)More clustering performance evaluation:

https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation\

*Model evaluation in Python:


https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report

https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation

https://scikit-learn.org/stable/modules/cross_validation.html

Potential Project -2,3:

- ❖ Data preprocessing for the gene expression matrix
 - ➤ Data collecting and merging (if needed)
 - **≻**Exploration
 - **≻**Visualization
 - **▶** Data cleaning
 - ➤ Dimension reduction (next lecture)
 - ➤ Get distance matrix
 - ➤ Perform classification/clustering
 - ➤ Performance evaluation

Resource and uncovered topics:

♦Introduction to data mining: Chapter 4.5 & 4.6 & 5.7 & 5.8 & 8.5

- **❖**Bootstrap
- Overfitting and generalization
- ♦ Other clustering and classification methods
- ❖Comparison between different methods
 - ➤ Clustering ➤ Classification