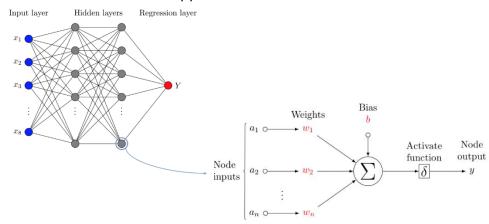

Lec-14 Scribing

Recap


Logistic Regression (from Lec-10)

New

- We can use logistic regression in deep learning for disease screening/classification
 - But the relationship among different variables within the image may be much more complicated than simple linear combination
 - The model capacity is not enough, i.e. Underfitting
 - In practice, we need to <u>overfit</u> the data first

- How to make models with more capacity?
 - To resolve complicated problems
 - o Increase the number of nodes
 - o Increase the number of layers
 - o Add non-linear function
 - Fully-connected layers
 - A general function approximator
 - We can approximate any function (relation) if we have enough nodes and layers
 - Universal approximation theorem

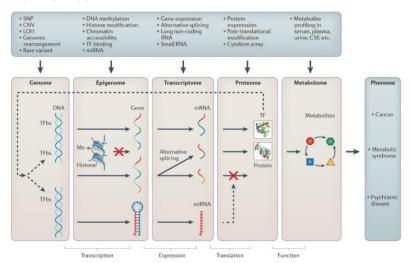
What if the model is much more complex than the problem?

- > Typical loss function curves
- ➤ Too complex---overfitting
 - The model is too complicated that it may fit the noise in the data
- What is overfitting?
 - Statistically: the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit additional data or predict future observations reliably
 - Machine learning: the method is more complex than the problem, such that it can perform well on the training dataset but does not perform well on the testing dataset
- > How to evaluate model and detect overfitting?
 - Train-validation-test split (More preferred in the big data era)

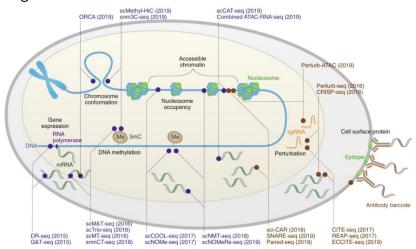
o Train: 70%

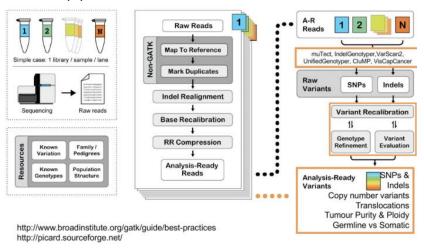
Validation: 15%

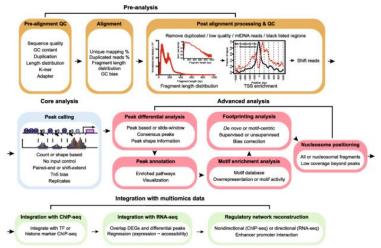
o Test: 15%

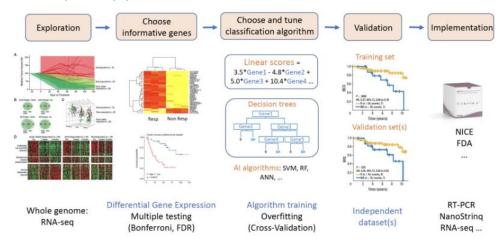

- Cross-validation (Can be done if the model is light)
 - o 5-fold validation
 - Leave-one-out
 - Reliable evaluation
 - o Expensive
- How to deal with overfitting?
 - Data: Too little, not reflect the true distribution
 - Model: Too large, too many useless parameters
 - Connectivity: Too strong, co-adaptation
 - Parameter value range: Too large, model too flexible
 - Training time: Too long, tend to overfitting
 - Model and data; Increase the smoothness

Recap: Why multi-omics (from Lec-1)


- Multi-omics: a growing field (exponential function of time)
- Omics aims at the collective characterization and quantification of pools of biological molecules that translate into the structure, function, and dynamics of an organism or organisms
- Study biological entities in large scale


multi-omics

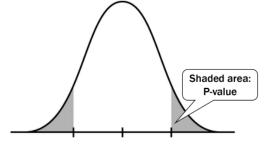

single-cell multi-omics


Genome pipeline

Epigenome pipeline

Transcriptome pipeline

- Multi-omics data analysis can be very tedious nowadays
- But the core techniques are the same
 - Sequence alignment and comparison
 - Dimension reduction and visualization
 - Clustering and classification
- However, one powerful technique is not yet covered in the course
 - To show how confident we are for our claims: statistical testing
- Statistical testing in genomics
 - Variant calling
 - Peak calling
 - Peak differential analysis
 - Differential gene expression analysis
 - Motif enrichment analysis
 - GO enrichment analysis
 - KEGG enrichment analysis
 - Genome-wide association study (GWAS)


- > Differential gene expression analysis
 - Statistical analysis to discover quantitative changes in expression levels between experimental groups
 - For a given gene, whether the gene expression difference is significant, other than due to natural random variation
 - How to compare two sets of values?
- Mean is not enough for comparing the difference
 - Need to consider the variance of two sets of data as well
 - How to compare the gene expressions considering both mean and variance?

T-test

- ➤ A kind of standard statistical test procedure
- > The purpose of t-test
 - Is there a significant difference between two sets of data?
- General idea
 - Calculate a test statistic based on the mean and variance of the data
 - Test statistic follows a Student's t-distribution
 - P-value: the probability that the result from the data occurred by chance
 - o Along with test statistic, t-value
 - o The smaller p-value is, the more confident we are
- How to do t-test?

$$T = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

For unpaired, two-tailed t-test

- P-value
 - Usually, the value should be smaller than 0.05
 - We cannot say this gene expressed differently under the two conditions if Pvalue is large
- > Different kinds of t-test
- Paired VS unpaired
 - For paired one, we cannot shuffle the values
- One-tailed test VS two-tailed test
 - Two-tailed test: different or the same
 - One-tailed test: greater, larger, smaller, at least

- For different kinds of t-test
 - The formula to calculate t-value can be different.
 - The formula to translate t-value to p-value can be different
 - But the t-test procedure is the same
 - Eventually, we will say the two sets of numbers are different (if p-value is smaller than 0.05)

Gene enrichment analysis

- A biological pathway is a series of interactions among molecules in a cell that leads to a certain product or a change in a cell. Such a pathway can trigger the assembly of new molecules, such as a fat or protein. Pathways can also turn genes on and off, or spur a cell to move
 - KEGG pathway database
 - Each pathway contains a set of genes
- > By experiments, researchers identified 213 genes associated with type-II diabetes
- Question: how to identify pathways related with type-II diabetes?

Testing association

- ➤ A pathway VS type-II diabetes
- > If there are related
 - a, d should be large
 - b, c should be small

	In gene set	Not in gene set	Total
In pathway	100 (a)	9000 (b)	9100
Not in pathway	113 (c)	11000 (d)	11113
Total	213	20000	20213

- How large they should be to say they are related confidently?
 - We need quantitative measure
 - A standard procedure
 - Statistical test for association
 - Fisher's exact test

Fisher's exact test

- > a statistical significance test used in the analysis of contingency tables
- Why is it called exact test?
 - P-value can be calculated exactly from the table
 - Recall t-test
 - We calculate a t-value
 - Based on a distribution, we get the p-value
- ➤ How to do Fisher's exact test?


$$p = \frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{a+b+c+d}{a+c}} = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{a!b!c!d!(a+b+c+d)!}$$

Cancer

- What is cancer?
 - a disease in which some of the body's cells grow uncontrollably and spread to other parts of the body
- Why do we want to study cancer?
 - Increasing deaths caused by cancer, which is just lower than those caused by heart disease, i.e. cardiovascular diseases
- How do we study cancer?
 - Cancer is usually believed to be a genomic disease
 - So, we will use genomics/multi-omics methods to study it
 - Genome/Epigenome/Transcriptome/Proteome/Metabolome
- Data analytics for cancer genomics
 - Genome: variant calling, genome association study
 - Epigenome: what is it, peak calling, differential peak calling
 - RNA-seq: DEG, gene fusion
- Neural networks and statistical testing in Python

```
>>> from sklearn.neural_network import MLPClassifier
                                                                                          >>> from scipy import stats
>>> X = [[0., 0.], [1., 1.]]
>>> y = [0, 1]
                                                                                          >>> rng = np.random.default_rng()
>>> clf = MLPClassifier(solver='lbfgs', alpha=1e-5,
                                                                                         Test with sample with identical means:
                            hidden_layer_sizes=(5, 2), random_state=1)
>>> clf.fit(X, y)
                                                                                          >>> rvs1 = stats.norm.rvs(loc=5, scale=10, size=500, random_state=rng)
MLPClassifier(alpha=1e-05, hidden_layer_sizes=(5, 2), random_state=1,
                                                                                          >>> rvs2 = stats.norm.rvs(loc=5, scale=10, size=500, random_state=rng)
                solver='lbfgs')
                                                                                            >> stats.ttest_ind(rvs1, rvs2)
                                                                                          Ttest_indResult(statistic=-0.4390847099199348, pvalue=0.6606952038870015)
                                                                                         >>> stats.ttest_ind(rvs1, rvs2, equal_var=False)
Ttest_indResult(statistic=-0.4390847099199348, pvalue=0.6606952553131064)
```

Python's scientific ecosystem

Resources and uncovered topics

- Dive into deep learning
- > Dropout
- Generalization
- Out of distribution generalization
- Data distribution
- Multiple testing correction
- How does cancer develop?
- Cancer types