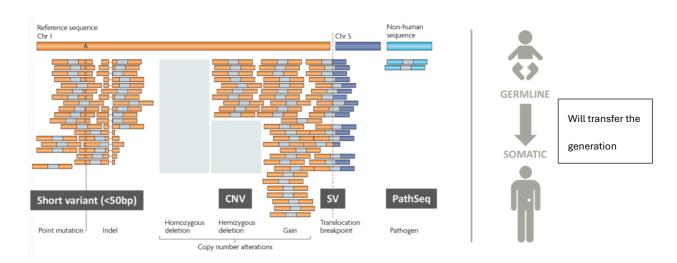
BMEG3105 Fall 2025

# Data analytics for personalized genomics and precision medicine

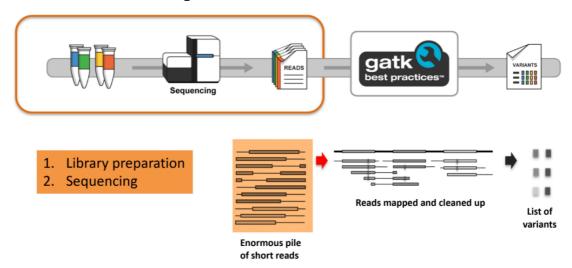
Lecturer: Yu LI(CSE)

Email: <a href="mailto:liyu@cse.cuhk.edu.hk">liyu@cse.cuhk.edu.hk</a>


# **Lecture 15: Genomics analysis**

Friday, October 24, 2025

### Why do we care about Variants?


- \* Under 3.2 billion sites in the human genome, any 2 humans share 99.5% DNA
- -> are the same, we need to do selection
- \* Genetic differences among people lead to differences in disease risk and response to treatment
- \* Genetic variation is used to find genes and variants that contribute to disease
- \* Cancer is a genetic variant at multiple levels

# Different types of genomic variants



- Point mutation: can change the signal
- SV-translocation breakpoint just like structure

# **Process of discover the genetic variants**



For the sequence mapping recap



The no. means the difference

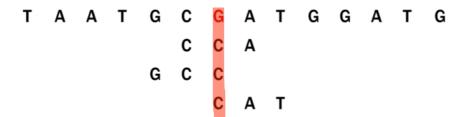
For this example, compare GCCA with CCA, they are the same

 $\Rightarrow$  The no. equal 0

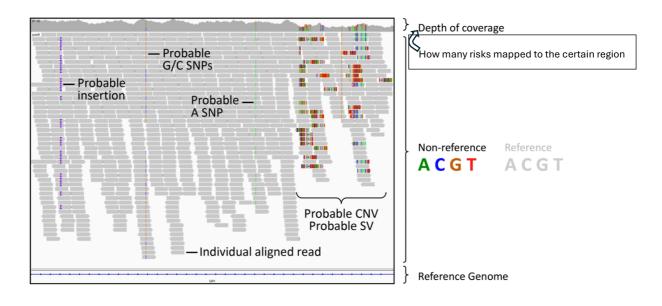
Example 2:



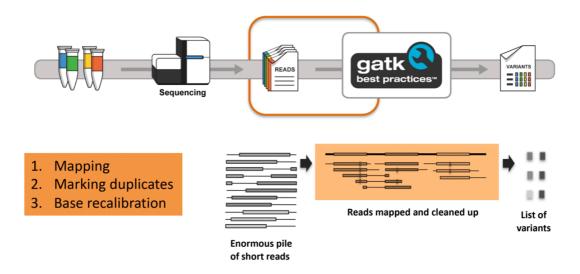
Compare GCGA with CCA, they have one difference


- $\Rightarrow$  The no. equal 1
- ⇒ Its doesn't mean that having the point mutation (Because only one sample)

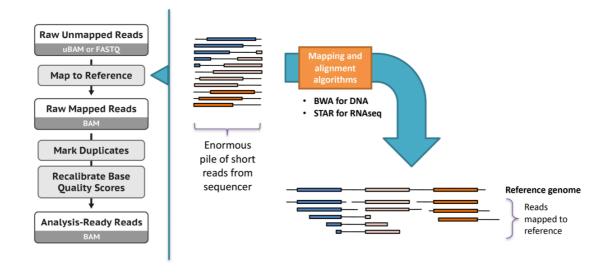
### **Variants VS Errors**


\* Distinguish between actual variation (real change) and errors (artifacts)

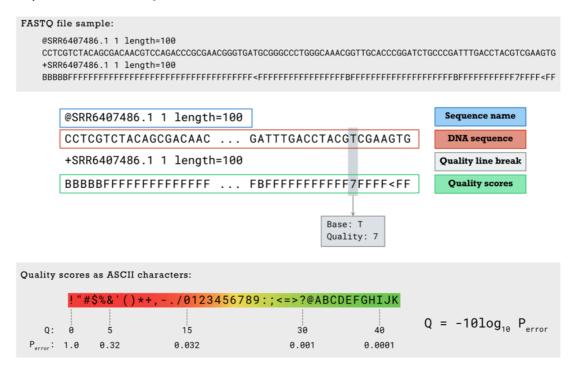
T A A T G C G A T G G A T G C C A


- \* Errors can creep in on different levels:
  - **▶** PCR artifacts (amplification of errors)
  - ➤ Sequencing (errors in base calling) 1% error
  - ➤ Alignment (misalignment, mis-gapped alignments)
  - ➤ Variant calling (low depth of coverage, few samples)
  - ➤ Genotyping (poor annotation)
- \* This situation is more reliable




#### **Genome Browser**




# Data pre-processing step



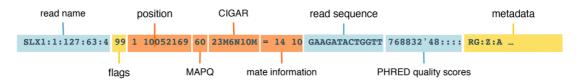
SETP 1: Map the reads produced by the sequence to the reference



### \* Input format: FASTQ



⇒ Perror value => smaller means lower error


# \* Output format: Sequence/Binary Alignment Map(SAM/BAM)

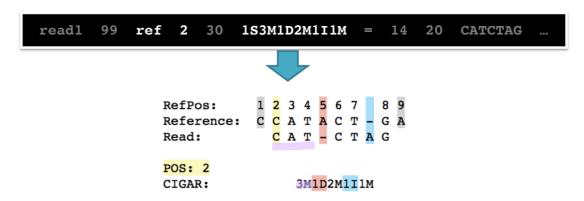
```
VN:1.0 SO:coordinate
@HD
                                   coding
                    LN:64444167
@SO
      SN:chr20
                                 CL:/srv/dna_tools/tophat/tophat -N 3 --read-edit-dist 5 --read-rea
      ID:TopHat
                    VN:2.0.14
lign-edit-dist 2 -i 50 -I 5000 --max-coverage-intron 5000 -M -o out /data/user446/mapping_tophat/index/chr
20 /data/user446/mapping_tophat/L6_18_GTGAAA_L007_R1_001.fastq
                                               chr20
                                                      190930 3
HWI-ST1145:74:C101DACXX:7:1102:4284:73714
                                        16
                                                                    100M
      {\tt CCGTGTTTAAAGGTGGATGCGGTCACCTTCCCAGCTAGGCTTAGGGATTCTTAGTTGGCCTAGGAAATCCAGCTAGTCCTGTCTCTCAGTCCCCCCTCT}
    AS: i:-15
                XM:i:3 X0:i:0 XG:i:0 MD:Z:55C20C13A9 NM:i:3 NH:i:2 CC:Z:= CP:i:55352714
                                                                                    HI:i:0
HWI-ST1145:74:C101DACXX:7:1114:2759:41961
                                        16
                                               chr20
                                                      193953 50
                                                                    100M
                                                                                        Θ
      TGCTGGATCATCTGGTTAGTGGCTTCTGACTCAGAGGACCTTCGTCCCCTGGGGCAGTGGACCTTCCAGTGATTCCCCTGACATAAGGGGCATGGACGA
    DCDDDDEDDDDDDDDDDDCCCDDDCDDDDEEC>DFFFEJJJJJIGJJJJIHGBHHGJIJJJJJJGJJJJIHJJJJJJJHHHHHFFFFFCCC
   AS:i:-16
                XM:i:3 X0:i:0 XG:i:0 MD:Z:60G16T18T3 NM:i:3 NH:i:1
HWI-ST1145:74:C101DACXX:7:1204:14760:4030
                                               chr20 270877 50
                                                                    100M
                                        16
     {\tt DDDDDDDDDDDDDDDDDDDDDDEEEEEEFFFFFFFGHHHHFGDJJHJJIJJJJIIIIGGFJJIHIIIJJJJJJIGHHFAHGFHJHFGGHFFFDD@BB}
   AS:i:-11
                XM:i:2 X0:i:0 XG:i:0 MD:Z:0A85G13
                                                  NM:i:2 NH:i:1
HWI-ST1145:74:C101DACXX:7:1210:11167:8699
                                        Θ
                                               chr20 271218 50
                                                                    50M4700N50M
            {\tt GTGGCTCTTCCACAGGAATGTTGAGGATGACATCCATGTCTGGGTTGCACTTTGGGTTCCCGAAGCAGAACATCCTCAAATATGACCTCTCG}
accepted hits.sam
```

- ⇒ Binary format is to reduce file size
- □ Coding applies from 001.fastq

#### **HEADER** lines starting with @ symbol describing various metadata for all reads

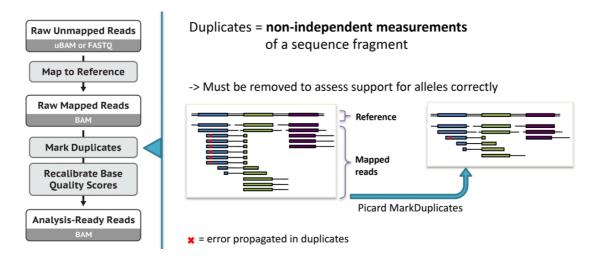
#### **RECORDS** containing structured read information (1 line per read/record)




- Added mapping info summarizes position, quality, and structure for each read
- Mate information points to the read from the other end of the molecule (other in a pair)

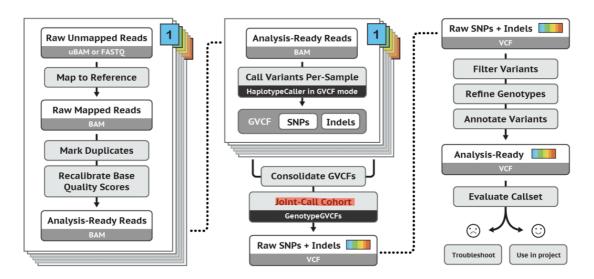
Read name = ID MAPQ = mapping quality

Position = the coordinate with mapping CIGAR = mapping result


CIGAR summarizes alignment structure

#### **CIGAR = Concise Idiosyncratic Gapped Alignment Report**




- ⇒ "Pos :2" means the starting point for the mapping
- ⇒ "3M" means 3 matched
- ⇒ "1D" means 1 deletion
- ⇒ "11" means 1 insertion

STEP 2 : Mark duplicates to mitigate duplication artifacts



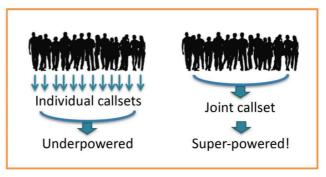
For having the X, we want to reduce it

### STEP 3: Variant calling in more detail

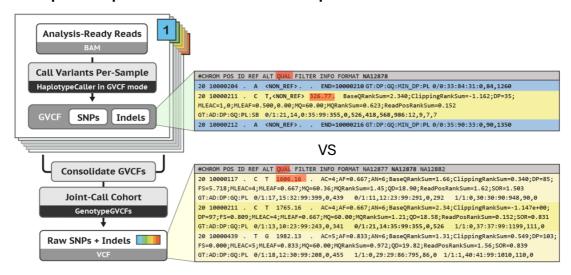


For the Joint-call Cohort, it is supper powerful

\*Variant Call Format (VCF)


```
##fileformat=VCFv4.1
##reference=1000GenomesPilot-NCBI36
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership">
\#\#FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
#CHROM POS ID
                   REF ALT QUAL FILTER INFO
                                                   FORMAT
                                                                 NA00001 NA00002 NA00003
    14370 rs6054257 G A 29 PASS DP=14;AF=0.5 GT:GQ:DP 0/0:48:1 1/0:48:8 1/1:43:5
    1230237 . т .
                             47 PASS DP=13 GT:GQ:DP 0/0:54:7 0/0:48:4 0/0:61:2
    1234567 .
                     GT G
                            50 PASS
                                                       GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3
```

- ⇒ For the "header", all the record within the file
- ⇒ "Record" refers to each variant
- ⇒ "#CHROM" means chromosome no.
- ⇒ "POS" means position
- ⇒ "REF" means reference


### Joint analysis empowers discovery



- Single genome in isolation: almost never useful
- Family or population data add valuable information
  - rarity of variants
  - de novo mutations
  - ethnic background



# From pre-sample GVCFs to final multi-sample VCF



- ⇒ They have different quality
- ⇒ Higher quality means more sample which is more credible

### Conclusion and significate part

#### ❖The pipeline

- > A concrete tool you can use in the future
- You know what you are expecting from each step. And which file you are looking for

### ❖The file format

- > We talked about reads a lot of time. What are they in the real analysis?
- ➢ It's for practice. We want to avoid the case that you learn a lot but you still cannot resolve reallife problems
- You know what to input to a specific step. If you get an error, you know what to change

### Trouble-shooting

- ➤ For example, in real-life, you have a nice BAM/SAM file, but your VCF file is empty. Is it because of programming bugs, file formats, or no variants?
- > Hopefully, our introduction to the pipeline will be useful
- ➤ Usefulness is more important than exams

# The reasons that we need to do the steps

For example, why we would like to remove the duplicates

# The ability to read the records in those files

- ➤ Given an alignment, you should be able to convert it into a CIGAR string
- > Given a VCF record, you should know what has been changed

# ❖ How different factors affect the quality of the mapping and the variant calling

- > Errors VS variants
- **≻** Duplicates
- **➤ Depth/coverage**
- ➤ Sequence quality
- ⇒ Should know the reason why duplicate