BMEG3105 Data Analytics for Personalized Genomics and Precision Medicine Lecture 17 Single-cell RNA-seq

5 November, 2025

Lecturer: Yu LI

Scriber: Samuel Luo(1155213946)

Level Study Focus

Genome Genetic variants, SNPs, CNVs

Epigenome DNA methylation, histone mods

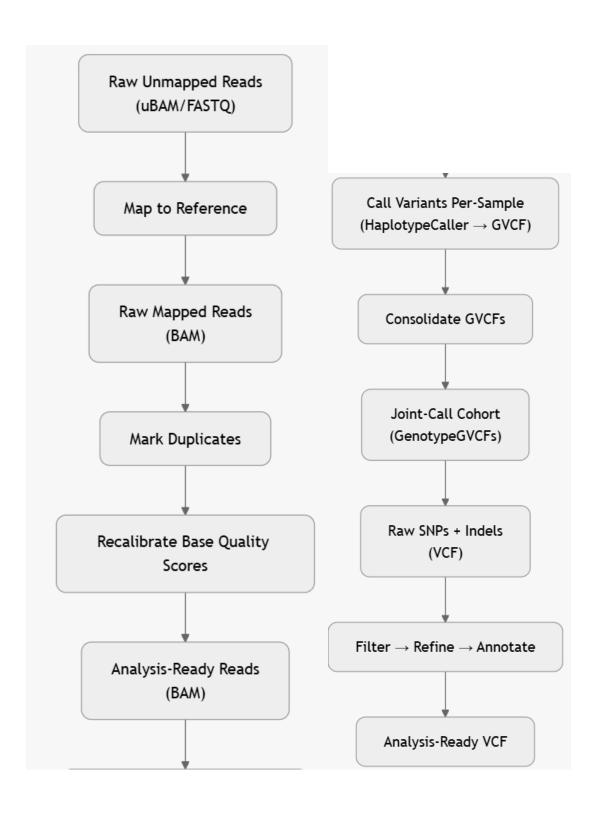
Transcriptome Gene expression, RNA-seq, fusions

Proteome Protein expression

Metabolome Metabolite profiling

Cancer Links:

- **Genetic variants** → Genome
- **Gene fusion** → RNA-seq
- Abnormal expression →
 - o Genome (genetic info)
 - o Epigenome (environment)
 - Transcriptome (direct measurement)



Variant Calling

- Why each step? (e.g., remove duplicates)
- Read file formats:
 - o Convert alignment → CIGAR string
 - o Interpret VCF record changes
- Factors affecting quality:
 - o Errors vs variants
 - Duplicates
 - Depth/coverage
 - Sequence quality

GWAS - Linking Variants to Cancer

Genome-wide association studies

- ~3.5 million SNPs
- Adjusted p-value = p-value / # tests
 - $_{\odot}$ Threshold: 5 × 10⁻⁸

Gene Fusion Detection via RNA-seq

- Why RNA-seq? → Captures transcripts, not just DNA
- Fusion gene DNA → abnormal mRNA
- Short reads (<300 bp) → span splice junctions
- Long reads (>300 bp) → span fusion junctions directly

Epigenomics: Environment Affects Expression

- Epigenetic modifications control gene access
- Histone marks, DNA methylation, chromatin accessibility

Key Assays

Assay Purpose

ATAC-seq Genome-wide chromatin accessibility

ChIP-seq Protein-DNA interactions

Epigenetic Data Pipeline

- 1. **Read mapping** → BAM
- 2. **Peak calling** → BED/narrowPeak
- 3. Normalization
- 4. Differential analysis
- 5. Motif enrichment
- 6. Visualization

Why Single-cell RNA-seq?

Bulk RNA-seq Limitations

- Averages expression across heterogeneous cell populations
- Masks cell-type-specific signals
- Cannot detect rare cell types or subpopulations

Single-cell Advantages

- Higher resolution of cellular differences
- Understand individual cell function in context

• Study tumor microenvironment, differentiation paths, drug response

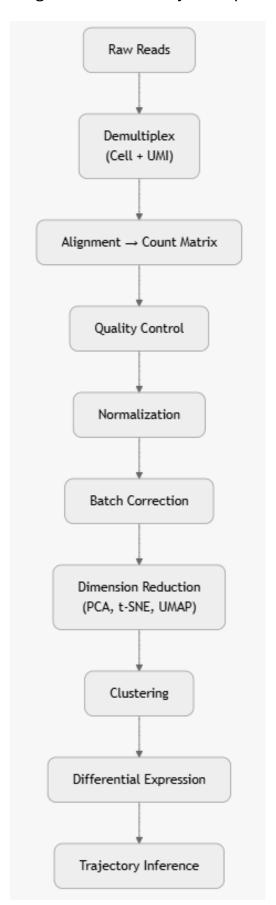
Applications:

- Cancer heterogeneity
- Neural cell classification
- Embryonic development
- Rare cell identification

Single-cell Sequencing Workflow

- 1. **Cell isolation** (FACS, microfluidics)
- 2. Lysis & reverse transcription
- 3. cDNA amplification (PCR or IVA)
- 4. Library preparation
- 5. **Sequencing** (Illumina, 10x Genomics)
- 6. Barcode/UMI demultiplexing

Single-cell Data Analytics Pipeline



14. Challenges in scRNA-seq (Pages 17-35 to 17-46)

Challenge	Cause	Solution Approach		
Noise	Low input, technical variation	QC filtering (gene count, mito %)		
Doublets	Two cells in one droplet	Simulate doublets → detect by similarity		
Dropout	Low mRNA → failed capture	Imputation (MAGIC, scImpute)		
Batch Effect	Different runs, labs	Harmony, Seurat CCA, Scanorama		

Take-home:

- Understand **why** challenges occur
- Know **intuition** behind solutions
- Technical details not required

Gene Expression Matrix

	Gene 1	Gene 2	2	Gene 25,000
Cell 1	5	0		12
Cell 2	0	3	•••	0
	•••	•••		•••
Cell 10,000	8 (1	•••	7

• Rows: Cells

• Columns: Genes

• Values: **UMI counts**

Quality Control Metrics

- # genes expressed per cell
- Total counts per cell
- % mitochondrial reads (high → dead/dying cells)

Doublet Detection

- Scrublet, DoubletFinder: simulate artificial doublets
- Compare real vs simulated → flag high-similarity cells

Dropout

- Definition: Gene expressed but not detected
- Cause: Low mRNA per cell
- **Trade-off**: More cells → more dropouts (fixed budget)
- **Solution**: Imputation (statistical/ML models)

Batch Effect Correction

- Cause: Non-biological factors (lab, reagent, time)
- Methods:
 - o Statistical: ComBat, limma
 - o **ML**: MNN, scVI, Harmony

Visualization: t-SNE

Goal: Reduce 25,000D → 2D while preserving clusters

PCA Limitation

• Linear projection → may destroy clusters

t-SNE Process

- 1. Random initialization in 2D
- 2. Iterative attraction/repulsion:
 - o Nearby high-dim points → attract
 - o Distant points → repel
- 3. Converge to stable layout

Advantages

• Excellent cluster preservation

Disadvantages

- Slow, non-deterministic, noisy, no distance preservation
- UMAP often preferred (faster, deterministic)