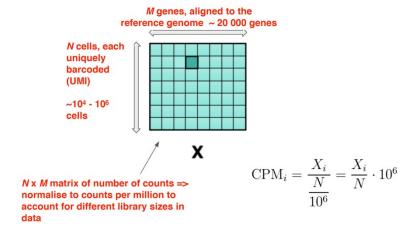

BMEG3105 Lec 18 Visualization and Protein - RNA/DNA 7th November, 2025


[Recap]

Single-cell analysis

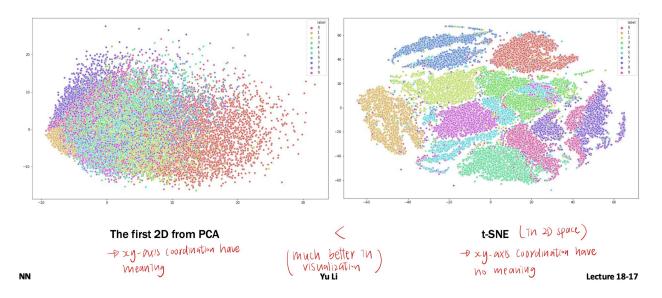
- 1. Examines the sequence information from individual using optimized next-generation sequencing (NGS) technologies
- 2. Provide higher resolution of cellular differences & better understanding of the function of an individual cell in the context of its microenvironment
- √ Define heterogeneity
- $\sqrt{}$ Identify rare cell population
- $\sqrt{}$ Tell cell population dynamics

Gene expression matrix

Challenges in single-cell analysis

- 1. Nosie
- 2. Doublet
- 3. Dropout
- 4. Batch effect (= non-biological effect)

[New]


T-SNE

- T-distributed stochastic neighbor embedding
- Nonlinear dimensionality reduction technique for embedding high-dimensional data for visualization in a low-dimensional space of 2/3 dimensions
- Model similar object by nearby points + dissimilar distant object with high probability
- Iterative process

*Process:

- 1. Random initialization
- 2. Update the position for each point compare the cluster to the original cluster: pinots from same cluster attract each other; points from different clusters push apart each other
- 3. Continue update
- 4. Until no more update

PCA vs T-SNE

Disadvantage of T-SNE

- o Iterative: longer running time
- o Non-deterministic: different runs may have different results
- Noisy patterns
- o The original distance is not precisely preserved
- o UMAP could be an alternative

Motif = sequence pattern

From aligned sequence to motif

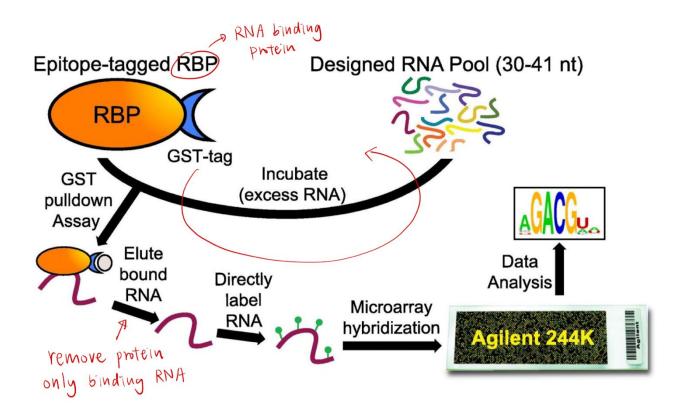
- Sequences should be aligned before converting into motif
- If not aligned -> have different sequences -> cannot pair the sequence up

Table 1: Starting sequences.

Sequence
AAGAAT
ATCATA
AAGTAA
AACAAA
ATTAAA
AAGAAT

Table 2: Position Count Matrix.

Position	1	2	3	4	5	6
A	6	4	0	5	5	4
C	0	0	2	0	0	0
G	0	0	3	0	0	0
Τ	0	2	1	1	1	2


Table 2: Position Count Matrix.

Position	1	2	3	4	5	6
A	6	4	0	5	5	4
C	0	0	2	0	0	0
G	0	0	3	0	0	0
Γ	0	2	1	1	1	2

Table 3: Position Probability Matrix.

1	2	3	4	5	6
1.00	0.67	0.00	0.83	0.83	0.66
0.00	0.00	0.33	0.00	0.00	0.00
0.00	0.00	0.50	0.00	0.00	0.00
0.00	0.33	0.17	0.17	0.17	0.33
	0.00	1.00 0.67 0.00 0.00 0.00 0.00	1.00 0.67 0.00 0.00 0.00 0.33 0.00 0.00 0.50	1.00 0.67 0.00 0.83 0.00 0.00 0.33 0.00 0.00 0.00 0.50 0.00	1.00 0.67 0.00 0.83 0.83 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.50 0.00 0.00

