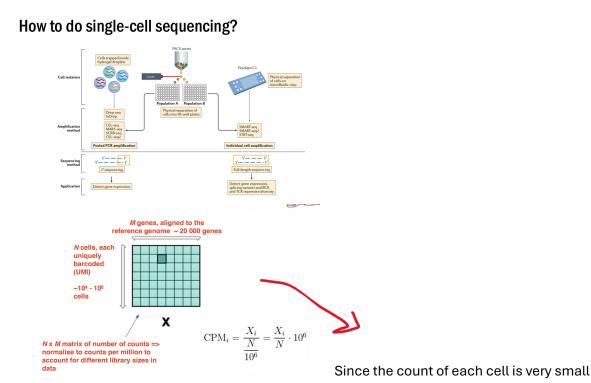
BMEG3105: Data Analytics for Personalized Genomics and Precision Medicine


Data analytics for personalized genomics and precision medicine Lecturer: Yu LI (李煜) from CSE

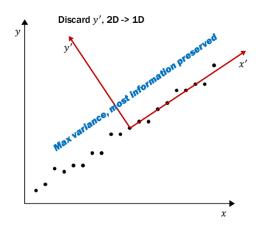
LECTURE 18: Visualization and Protein RNA/DNA

Scriber: Rana Sabri (1155228843)

What is single cell sequencing?

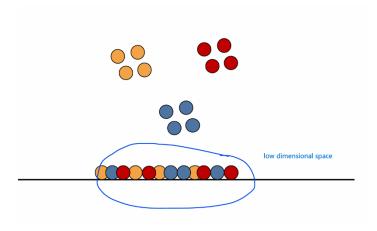
Single-cell sequencing refers to methods that isolate and sequence the DNA, RNA, or other molecular content of *individual cells* rather than a mixture of many.

we times it by a million.


CHALLENGES OF SINGLE CELL DATA ANALYSIS

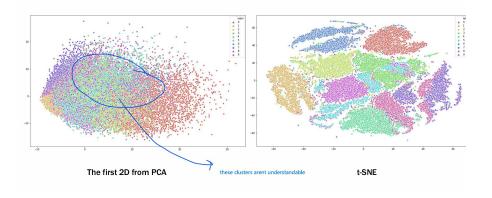
- ♦ Noise = Random fluctuations or errors in the data caused by technical limitations.
- ♦ Doublet= Occurs when two cells are mistakenly captured and sequenced as one.
- ❖ Dropout=Failure to detect gene expression even when the gene is active in the cell.

♦ Batch effect= Systematic differences in data caused by processing samples in separate batches.


Dimension reduction---PCA

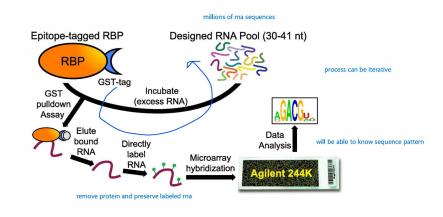
As we have learned in previous lectures PCA is a method we use to reduce dimensionality of a dataset while preserving as much of its variability (information) as possible.

However, PCA also come with its challenges, because its main goals are to reduce dimensionality we lose a lot of data, and the original clusters are not preserved.


That's why there is another method called Tsne (t-distributed stochastic neighbor embedding)

STEPS FOR Tsne

- 1. Random initialization
- 2. For each point, update the position a little bit
- 3. ...
- 4. Until no more update


PCA vs tSNE

PCA is linear whereas tSNE is non linear method, and you can never reverse process and retrieve original information with tSNE.

Protein-RNA/DNA Interaction

Protein binding has preference, the problem is how do we get the binding motifs and how do we visualize them.

What is motif? — motif is a kind of sequence no matter protein, dna or rna, its repetitive

From aligned sequences to motif

MAKE SURE TO ALIGN SEQUENCES BEFOREHAND

Table 1: Starting sequences.

#	Sequence
1	AAGAAT
2	ATCATA
3	AAGTAA
4	AACAAA
5	ATTAAA
6	AAGAAT

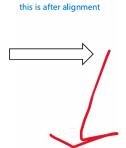


Table 2: Position Count Matrix.

Position	1	2	3	4	5	6
A	6	4	0	5	5	4
\mathbf{C}	0	0	2	0	0	0
G	0	0	3	0	0	0
Τ	0	2	1	1	1	2

for example ATCG can appear 3 times in the sequence but in different location so we have to align them

Table 3: Position Probability Matrix.

Position	1	2	3	4	5	6
A	1.00	0.67	0.00	0.83	0.83	0.66
\mathbf{C}	0.00	0.00	0.33	0.00	0.00	0.00
G	0.00	0.00	0.50	0.00	0.00	0.00
T	0.00	0.33	0.17	0.17	0.17	0.33

probability matrix.

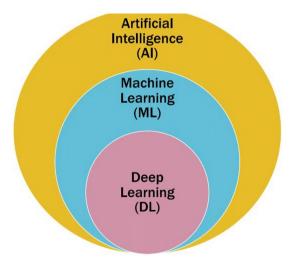
After position count we can come up with position

Sequence alignment is very important, if we didn't do maybe each position could equal 0.25 probability.

Sequence alignment

$$\mathbf{H} = \begin{pmatrix} 0 & 2 & 2 & 1 & 0 \\ 0 & 2 & 4 & 3 & 2 \\ 0 & 1 & \mathbf{AT5TCA-CC-G-T-A} \\ 0 & 0 & 2 & \mathbf{T5TCAA-TGGTC-2} \\ 2 & 1 & 1 & 4 & 7 \end{pmatrix}$$

❖AI + Health data


Why do we care about health data?

- **Personalized Care:** Health data helps doctors tailor treatments to individual needs, improving outcomes and reducing side effects.
- **Disease Prevention:** Tracking patterns in health data allows early detection of outbreaks and chronic conditions.

Basically, without the data, doctors cannot diagnose precisely.

Al vs ML vs DL

- AI (Artificial Intelligence) is the broad field of creating machines that can mimic human intelligence and behaviour.
- **ML (Machine Learning)** is a subset of AI where systems learn patterns from data to make predictions or decisions without being explicitly programmed.
- **DL (Deep Learning)** is a specialized branch of ML that uses multi-layered neural networks to model complex patterns in large datasets.

